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AN ANALYSIS OF THE STABILITY OF AN AIRPLANE WITH FREE CONTROLS

By Roserr T. Jonns and Doris CoHEN

SUMMARY

An investigation is made of the conditions essential to
the stability of an airplane with free control surfaces.
Calculations are based on typical airplane characteristics
with certain factors varied to cover a range of current
designs. Stability charts are included to show the limiting
values of the aerodynamic hinge moments and the weight
hinge moments of the control surfaces for various positions
of the center of gravity of the airplane and for control
systems with various moments of inertia. The effects of
reducing the chord and of eliminating the floating tendency
of the surface, of changing the wing loading, and of
decreasing the radius of gyration of the airplane are also
indicated. An investigation has also been made of the
nature of the motion of the airplane with controls free and
of the modes of instability that may occur.

Stability with the conirols free generally depends more
eritically on the design of the control system than on the
stability characteristics of the airplane. In particular,
too great a weight moment, combined with @ high degree of
aerodynamic balance, may cause undamped oscillations.
Regardless of the weight moment, it appears difficult to
secure stability when the aerodynamic balance exceeds 75
percent of the kinge moment.

INTRODUCTION

During recent investigations by the NACA of
the flying qualities of several airplanes of different
types, a tendency toward longitudinal instability was
noted that involved pitching of the airplane reinforced
by movements of the elevator. In other flight tests,
laterel instability accompanied by oscillations of the
rudder or of the ailerons has been noticed. The
oscillations observed were rapid enough to be influenced
by the inertia of the control surfaces but were not
believed to be sufficiently rapid to involve the elasticity
of the structure. The problem is thus concerned with
motions intermediate between flutter and movements
of the airplane as a rigid body.

It was thought that a theoretical analysis of the
stability of an airplane with the controls free might
shed some light on the cause of these undesirable
motions and might indicate how they could be avoided
in design. Of the previous publications on the subject,

the most detailed is that of E. Bartsch on lateral
motions of an airplane with free rudder and ailerons
(reference 1). In order to make specific recommenda-’
tions applicable to modern design, & study of stability
more complete and detailed than any available was
undertaken. Caleulations were made covering both
longitudinal and lateral motions and the elevator-free,
the rudder-free, and the aileron-free conditions. The
computations were based on a set of typical airplane
characteristics, except for parameters introduced to
cover such variations in control-surface design as seem
most likely to affect stability. The results that might
be expected under corresponding conditions in airplanes
with different over-all mass characteristics have also
been indicated.

SYMBOLS AND COEFFICIENTS

The following symbols are used in addition to those
defined in the report covers. (See figs. 1 and 2.)

The subscript ¢ refers to a control-surface character-
istic and is replaced in the various sections of the
report by e for elevator, » for rudder, and a for ailerons;
the subscript & refers to the control stick or wheel
mechanism.

A length equal to one-half the mean wing chord is
used as the fundamental unit of length in order to obtain
the results in a form applicable to geometrically similar
airplanes of any size or loading. Conversion to this
system is made by dividing all lengths measured in
ordinary units by the length of the half-wing chord.
Quantities entering into nondimensional expressions do
not, of eourse, require such. conversion.

steady-flight speed

B angle of sideslip

k. radius of gyration of control mechanism about
control-surface hinge axis

¥, moment arm of center of gravity of control
system about hinge axis, positive when center
of gravity is behind hinge

y distance from center of gravity of aIIoron to plane
of symmetry

A aspect ratio

! tail length of airplane
109



110

Z;. projection on X axis of distance between
center of gravity of airplane and its aero-
dynamic center (with controls fixed)

p= 7? airplane density ratio
8—20
pe=—_control-surface density ratio

Sc_gcc
¢ aileron weight-moment parameter. (See
equation (14).)
H control-surface hinge moment
n control gearing ratio

Ch= — . i

s =Uy dlstance along flight path
dw
d n Et; ete.

é; 3', ete.= W' 3@; etc.
D= g—sdiﬁ'erential operator

w, 5 etc
’

e =2; ,p= b%, Cuoi= 2L ote.

STABILITY WITH ELEVATOR FREE

Pitching motions sufficiently rapid to be affected
by the inertia of the elevator.control probably will not
involve sensible changes in the forward speed of the
airplane. - Accelerations of the airplane along the flight
path will therefore be neglected. The rapidity of the
oscillations makes it advisable, on the other hand, to
include certain aerodynamic effects not retained.in. the
equations of motion in their usual form. In addition

to the moments developed in response to the displace- |
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F16URE 1.—Notation for longitudinal motions,

ments of the tail surfaces, moments due to angular
velocities of these surfaces are also considered. Thus,
the pitching moment due to angular velocity of the
elevator about its hinge dM/0§, the pitching moment
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due to the aerodynamic inertia of the surfaces dA£/dw,
and the aerodynamic damping of the elevator 0H/d§ will
be included in the present analysis. Secondary factors
entering into the equations, such as the vertical acceler-
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FIGURE 2.—Notation for latersl motions,

ation at the center of gravity due to the lift of the
horizontal tail, are neglected. The equatlons of motion
take the followmg form:

oZ

m(w—ULG) wso - ()
- OM aM b]bf OM . dM
L i =
mkyﬂ b D . bw aw —b > —— > —'O "
aH bH
—a@—&ﬁ =0
08 o5

and the stability derivatives are replaced by the
equivalent coefficients, equations (1} are reduced to the

following nondimensional form:
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(wD+ e )a—uDs =0
- (OmD,,D'l‘ Gma) a-t (FkYZD'— Gmpa) Ds

- (OmD;D + 0»5)5 . =0 (2)
(steD— Oba) 2 + [.uu (:Eal'l' ksz)-D'— #ljl— Ohm]Da

T (e 2DP— Gy D— Cy)5 =0

It is to be noted that, with the exception of the inde-

pendent variable s, equations (2) involve no quantities
dependent on the steady-flight speed. Motions plottéd
against the distance s are therefore applicable to any
initial flight condition within the unstalled range.

The equations of motion are based on the assumption
of a constant forward velocity and therefore do not
show the possibility of a phugoid oscillation of in-
creasing amplitude or the possibility of & certain type
of slow divergence from the steady-flight attitude.
Experience has shown that the unstable phugoid motion
is not likely to cause trouble under ordinary operating
conditions because its period is of the order of 2500
chord lengths; the oscillations of interest in control-free
stability have periods of the order of 50 chord lengths.
The slow divergence corresponds simply to a loss of
static stability when the control is free.
with the elevator free is assured if the following con-
dition is fulfilled:

0&50m¢>0m;0h¢ ' (3)

In this paper the divergence treated is of & more rapid
type.

Because the pitching that enters into the equations of
motion was expected to be quite rapid, it was thought
that the lag in the effect of the wing wake at the tail
would be ‘an important factor. Under steady condi-
tions, the wing wake diminishes the relative angle of
attack at the tail to about one-half. After a sudden
change of angle, however, the tail will at first receive a
strong upwash due fo vortices shed by the wing in
consequence of its additional eirculation. The result
is a rather complex fransient variation of the vertical
velocity. This variation affects both the lift of the
horizontal tail and the floating moment of the elevator.

The possible effect of the transient-flow phenomenon
at the tail was estimated by making several calculations
in which a simple fixed lag in the action of the downwash
was assumed, expressed by setting !

Cra=Crigp py T Omr (1 — ™) @)

0n¢= Ogam“(l—eze"”") (5)

Teail

A comparison of the resulting motions with corre-
sponding results obtained when the lag function was

1 For the use of the operatar ¢tP to show the effect of lag, see refarence 2, page 26.
Subsequent Investigation (reference 3} has shown the complex transient effect to be
mare nearly approximated by the operator ese— (0 D,

Static stability '
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entirely omitted showed that the lag, although having
a noticeable effect on certain stable modes of oscillation,
caused only a small change in the slower type of oscilla-
tion in which instability occurs first. Revision of the
computations to include a more accurate representation
of the lag was therefore considered not worth while and
all calculations were allowed to stand with e.c™*? as
the lag operator. In order to combine this operator
with other terms of the equations, the expression was
expanded into & power series in D.

The stability of the motions is indicated by the nature
of the roots of the characteristic equation, which is
obtained from equations (2) by setting the determinant
formed from the coefficients equal to zero. If D,
rather than 6, is considered one of the variables, this
equation is

The equation is thus a quartic, and terms introduced
by the expansion of O, (D) and C,, (D) thet would
increase its degree were discarded because the roots are
always small and higher powers are negligible in value.

The roots of the stability equation were found for
several typical cases. Apparently, in the usual case the
motion is oscillatory and of two feirly distinet modes.
One of the modes of oscillation, although more rapid
than the modes encountered with the confrols fixed, is
nevertheless slow enough (with a period of the order of
60 chord lengths) to involve coupling and reinforcing
movements of the airplane. The demping is conse-
quently light, and instability will occur first in thisslower
mode. It is undoubtedly this mode that has been ob-
served in flight in the cases mentioned in the introduc-
tion. The second mode is much more rapid but heavily
damped. The short period (about 15 chord lengths)
suggests that the motion is essentially limited to a
flapping of the elevator and may become unstable only
as flutter involving elastic deformations of the structure,

It was expected that variations in the aerodynamic
hinge-moment slope Ci;, the mass-moment coefficient
Le¥s, the moment-of-inertia coefficient gk2, and the
static stability coefficient (7, would be most important
from the designer’s point of view. These quantities
were therefore retained in the equations as parameters,
and numerical values were substituted for the remaining
quantities. Limiting conditions for stability are then
in the form of relations connecting the four variables.

Of the conditions for stability, only two were found
to be effective within the practical range of the param-
eters. 'A boundary beyond which straight divergence

wD+30%, —n 0
- Omnap_ Omn, (D) Hk}'ZD_ Ompa - OmDGD—‘ Gms =0 (6)
pZD—Coo (D)  pu(Zd+EHD pektD?
_Frie_ OADQ - OknaD_ Oha
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occurs is obtained by setting the constant term of the
stability equation

B(OnCrny = OnyCr) 452210, — O oy 3] (1)
equal to zero. This expression is independent of the
elevator moment of inertia. The second boundary is
the limit for oscillatory stability and is obtained by
applying Routh’s discriminant to the stability quartic.
This boundary was found to shift only a negligible
amount with a large change in the static-stability co-
efficient C,, and was therefore considered to be inde-
pendent of O, . Partial elimination of the parameters
in this way made possible the presentation of the results
in a simplified form.

The computations of figure 3 were based on the char-
acteristics of generally used types of balance and on a set
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F16UuRE 3.—Elevator-free stabillty reglons. 80-Dercent-chord elevator; g, 45; kr, 1.70.

of typical airplane characteristics. (See table I of the
appendix.) The effect of variation of the moment of
inertia was subsequently investigated. Figure 4 covers
the case of an airplane with the radius of gyration re-
duced to make the moment of inertia half the average
assumed for figure 8. An investigation was also made of
the stability of a more heavily loaded airplane by dou-
bling the density factor x and comparing (fig. 5) & repre-
sentative stability boundary (in terms of u.kt2 and p.T,)
with the corresponding curve for the conditions of
figure 3. The particular variations chosen were con-
sidered representative of the trends in modern airplane
design.

Of the over-all characteristics of an airplane, the
radius of gyration seems most likely to affect its
stability. The results show that an airplane with a
small radius of gyration will not permit so wide a range
of the elevator design parameters as will the assumed
average airplane. Its greater responsiveness to elevator
deflection will cause it to reinforce more readily the
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movements of the elevator leading to oscillatory in-

stability. The boundary for divergence (equation (7))

is independent of variations in the radius of gyration.
As shown in figure 5, the relative density or loading
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F10URE 4.—Elevator-free stability. Reglons for reduced airplane moment of nertia.
B0-percent-chord elevator; u, 45; ky, 1.27.
of the airplane is not a critical factor, which may be
attributed to the fact that the normal relation befween
the lift-curve slope and the loading is such that the
airplane is effectively constrained against relative
motions normal to the wing surface. Differences in the
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FIGURE &.—Elevator-free stability. Effect of increasing density factor. Ci,
 Ta.e0.12; ky, 1.70.

degree of this constraint, as caused by ordinary varia-
tions in either C, _ or u, are unimportant.

In general, 1t‘may be concluded that the design of
the elevator itself is of critical importance in obtaining
control-free stability. A large mass moment or moment
of inertia of the control surface is seen to be unfavorable
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to stability. Of primary concern, however, is the ad-
verse effect of aerodynamic balance, especially because’
it is found necessary to resort to a high degree of balance
with many modern airplanes.
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FratrE 6.—Typical variation of C’n, and C'Aﬂ with aerodynamie balance ares for small
deflections (from reference 4).

Figure 6 (taken from data of reference 4) shows typical
hinge-moment-coefficient curves for a control flap having
the .inset-hinge type of balance used in most modern
control systems. In these experiments, the hinge mo-
ment due to & unit change in the angle of attack
1
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FigvRE 7.—Elevator-free stability. Regions for nonfloating elevator. 50-percent-
chord elevator; g, 45; kv, 1.79.

remained practically constant as the balance ares was

increased, This form of balance thus would not provide

compensation for the floating moment C,, in the same

proportion as for the restoring moment C,, and, as the

degree of balance was increased, the equilibrium floating

angles would become increasingly large, so that there
would be greater danger of static instability with controls
free, as shown in equation (3). The same considerations
apply to the balancing tab.

On the other hand, it should be possible to com-
pensate for the floating pressure in the same or, perhaps,
in a greater proportion than the proportion of reduc-
tion of the restoring moment. Thus, with & horn type
of balance, for example, the equilibrium floating angles
mey be held constant or may even be reduced, which
results in greater static stability.?
figure 3 (0,,%”= —0.24) with figure 7 (0,,%”=0) shows

that decreasing the floating moment also decreases the
likelihood of rapid divergence. The boundary for
oscillatory stability is hardly influenced by this factor.

The computations for either type of balance apply
to an elevator operated by a servo tab, provided that

. e
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FIGURE 8.—Elevator-free stability. Regions for reduced elevator chord. 25-percent-
chord elevator; u, 45; kr, 1.70.

the tab remains fixed relative to the elevator during the
oscillations. Thus, as far as stability is concerned,
servo operation with controls fixed corresponds to the
ordinary control-free condition. The stability with
both elevator and servo tab free is not covered in the
present study.

Future designs will probably show a trend toward
narrower control surfaces, whether balanced or not,
because the basic hinge moments can be markedly
reduced with & small loss of effectiveness. If the chord
of the elevator is reduced from 50 percent to 25 percent
of that of the horizontal tail surface, its effectiveness is
reduced by only 30 percent; whereas, the basic hinge
moment is divided by 4.

Figure 8 shows the regions of stability with a reduced

3 Another advantage of the horn type of balancs Is that the hinge gap may be
sealed. The sublect of horn balances {s discussed turther by Hemphill in reference 5.

A comparison of
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elevator chord. The differences between these regions
and those of figure 3 are principally due to changes in
the coefficients 0C,/0a, 3C,/0DE, and J3C,fdDs. As
previously noted, the control moment (proportional to
9C,,[08) is reduced by only 30 percent. In the inter-
pretation of this figure, it should be borne in mind that
the ratios #, and k, would naturally be smaller for the
narrower elevator. If account were taken of this scale
factor, the region of stability would appear much wider
than the region for the 50-percent elevator.

An effective method of obtaining greater stability in
the control-surface motions is the introduction of
additional damping into the system. If the responsive-
ness of the control surface is reduced, a considerably
larger degree of aerodynamic balance msy be used

(fig. 9). The permissible mass unbalance is also
increased, although to a lesser extent. The results
T
P
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FIGURE 9.—Elevator-free stability reglons, Effect of additional damping In the
control system. 60-percent-chord elevator; u., 45; kr, 1.78.

shown are for & comparatively small amount of damping
(AChp=—1.0), which corresponds, for 2 rate of
deflection of 20° per second, to the force required of
the pilot to maintain 1° of elevator deflection.

STABILITY WITH RUDDER FREE

Because the lateral motions involve two controls and
five degrees of freedom, the analysis is more complex
than for the longitudinal motion, which has one control
and three degrees of freedom. Fortunately, the
rudder and the ailerons exert their principal influences
on different modes and only a slight loss in accuracy is
incurred if each mode is treated separately.

Oscillation of the rudder control will be primarily
influenced by coupling with the yawing oscillations of
the airplane. The small rolling oscillations simul-
taneously induced will generate neither very strong
yawing moments nor very strong rudder hinge moments;
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hence, the rolling degree of freedom will be neglected
in the _examination of rudder-free stability. This
assumption, which has been checked quantitatively by
Bartsch (reference 1), reduces the simultaneous equa-
tions of motion to the following form:

DY

ON N oN
g — 2 — g2 2198 =0
05 08
v oH oH ®
Mk A+ 8)—mZ Us(§+ B) +Im & §— B35 5%
OH oH _
" Vog 7

If substitutions corresponding to those introduced in
the elevator calculations are made, the equations are
reduced to the following nondimensional form:

(w-UYﬂ B+uDy =0
—Cp+(5P -0, 04— (G D+ Cs =0®)
— D+ B+ [ (b +ED D— (Croy+uENDY

%+ (k2D Cyp D—Ch)3 =0
The ;;abﬂity equation is
_#D_;_% b 0

i, H2Pog, —CuDt0y |=0
CwED+Cy mEMHEDD kD

: — Crpy+25)  —CopaD—Ch,

This equation is closely analogous toequation (6) for
longitudinal motion. The ecorresponding coefficients
have similar values with the exception of-Oyﬂ, which is

much smaller than the corresponding term C:_ because

the normal force that is developed by the wing in
pitching is absent in the lateral motions.

The roots of the stability equation again indicate two
modes of motion. Thus, in a typical case, the roots
are —0.0084+0.035¢ and —0.254-0.28¢. In this in-
stance, the modes are hoth oscillatory. The first
peir of roots indicates a lightly damped oscillation of
such a frequency (period==90 chord lengths) as ta involve
sensible coupling between the yawing of the airplane
and the swinging of the rudder. The second mode is of
much higher frequency and undoubtedly represents the

natural oscillation of the rudder with the airplane acting

as & practically rigid support. When the restoring
moment C,, is reduced, the second mode becomes
aperiodic and eventually divergent as the motion be-
comes’Jess rapid. Oscillatory instability appears first
in the slower mode, as in the case of the elevator.

(1



Page 115, Figures 10 to 13: All values of Op, given in figures 10
through 13 should be reduced by dividing by 6; that is,
the values on the curves should read g = 102, .06,
and ,026 instead of .612, 384, and .156.,

Page 116: In the second equation of the two bracketed as (12), the sign
of the third term should be changed from minus to plus; thus
the equation should read: '

Pages 116- and 117:

2
2478 oE  dp, —
mﬁ"‘péi'l'-d—g'(mayI"‘-opo

Figure 14, containing the aileron~free stability

boundaries, has been found to be incorrect and
should not be used. The paragraph referring to
this figure, beginning at the bottom of page 116 . o
and continuing through equation (15) on page 117,
is therefore also in error. The correct boundaries
for oscillatory stability with allerons free are
given in a new figure 1Y which hae been inserted
in this copy of the Annual Report. The boundary
for divergence is that given by equation (16).
Statement 3 under "Concluding Remarks," page 117,
no longer applies to ailerons.
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The calculations of the stability boundaries covered
changes in rudder chord, changes in the airplane
moment of inertia mkz?, and changes in the weather-
cock stability factor Cy,. Additional calculations were

mede to show the action of a nonfloating type of rudder.
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F1IGURE 10.—Rudder-free stabiliiy. Minimum regions (O<p-ks<8). 50-percent-
chord rudder; g, 45.

Variations in the density factor x were considered in-
significant, this quantity entering the equations inde-
pendently only in conjunction with the small side-force
derivative Cry.

A simplification corresponding to the elimination of
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FIGTRE 1i.—Rudder-fee stability. Varlativn of boundaries with moment of inertia
of rudder. 30-percent-chord rudder; g, 45; £z, 2.20.

Cn, as a parameter of the oscillatory stability boundary
wes not found possible in these equations. Plots of
Routh’s discriminant for rudder-free motion show it to
be noticeably dependent on ell four parameters, the
lenst effective being the moment of inertia of the rudder
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system. Since the permissible mass moment is
smaller for larger values of p.k/2 an upper practical
limit (u%,2<<8) was assumed for this parameter and the
resulting family of curves was plotted to give ihe
minimum regions for stability in terms of Ch;, niZr,
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Figurk 12.—Rudder-free stability. Minimum regions for reduced rudder chord
(0<prke2<8). 25-percent-chord rudder; a, 45; kx, 2.20. .

and Cy, (figs. 10, 12, and 13). The margin beyond
these minimum regions, for values of p/k,* less than 8§,
is indicated by figure 11, in which the corresponding
curves for p.k,*=8 and pk,.*=2 are plotted.

The charts show the weathercock stability of the air-
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FI1GURE 13.—Rudder-free stability. Minlmum regions for nonfloating rudder.
(0<prk,2<8). 50-Dercent-chord rudder; g, 45; kz, 2.20.
plane to be of greater importance in the case of lateral
motion than in the case of longitudinal motion. The
effect of the moment of inertia of the control surface,
which determined the degree of oscillatory stability in

longitudinal motion, is small relative to the effect of
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Crg The greater the value of C,, the less is the

allowable mass moment with any given amount of
aerodynamic balance. On the other hand, if the
mass moment is small enough to insure damping of
the oscillations, a larger value of Cy, will increase the
aerodynamic balance that may be introduced without
causing divergence. The radius of gyration of the
airplane is of considerable importance, shifting the
boundary for oscﬂlatory stability so as very nearly to
double the stable region when the moment of inertia is
doubled. (Seefig. 10.)

Instability with the rudder free is likely to occur in
the form of a divergence. The criterion is practically
the same as the condition for weathercock stability
with the control free, which is .

Ohaonﬂ_' tho;zg. 20 (1 1)

This criterion is independent of the moments of inertia

of the airplane and of the control surface.. The greatest
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Figure 14.- Allercn-free stabuity Boundaries for oscillatory
stability. u , 45; , 1.80.

gain in this margin of stability is obtained by i mcreasmg
Cp and reducing the floating tendency Cig of the rudder.
Reducing the chord of the rudder decreases both Chs
and C,; and hence considerably widens the margin of
stability. (See fig. 12.) Complete elimination of Ch
by the use of a nonfloating type of balance eliminates the
likelihood of divergence within the normal range of
weight distribution (fig. 13). Such & gain, however,
would be achieved only by sacrificing some margin of
oscillatory stability.

The lateral oscillations of an airplane with controls
fixed are known to be influenced by coupling between
the rolling and the yawing motions. These oscillations
tend to become undamped when the weathercock
stability Cns approaches zero. Freeing the rudder
control diminishes Crs and may thus lead to this type
of oscillatory instability. The condition for zero
weathercock stability is approximately that for straight
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divergence in the control-free condition (equation (11))
and the boundaries for divergence (figs. 10 to 13) can
therefore be interpreted also as boundaries for stability
of the slow lateral oscﬂlamon when the airplane is free
to roll. The absence in the criterion of terms involving
the mass of the rudder may be explained by the fact
that, as the limit of stability is approached, the oscilla-
tion becomes very slow and the yawing component tends
to disappear.

STABILITY WITH AILERONS FREE

The stability of an airplane with the ailerons free is
examined by including in the equations the interaction
between rolling motions of the airplane and movements
of the ailerons. Small simultaneous yawing and side-
slipping motions will also occur but, because their
reactions on the rolling and the hinge moments are
small, they may be neglected. The resulting equations

are: i
mkz S —p g_f; 5%3*82? e W )
makazftz Pap t(mﬂ?/f'l‘nm Je)— a_ag_ %mo (12)
or, in nondimetisional form,

(%2D—OID¢)D¢_- (CipyD+Cip)é 0 "

(ED—Cipy) Do+ ok’ D*— G pyD—G3,)6 =0

In the aileron control, a part of the mechanism
normally rotates about an axis at right angles to the
aileron hinge axis. As a result, a part of the aileron
torque produced by angular acceleration of the air-
plane is proportional to the product of inertia of the
aileron itself and another part is proportional to the
moment of inertia of the control stick or wheel. . Both
quantities are included in the parameter £, Thus: -

=‘m-¢'_—911 +nmk,’ (14)
Sagca

where the subscript s refers to the control stick and 5
is a congtant inserted to take sccount of any difference
of gearing between the control and the aileron.

The calculations, based on values of the derivatives
given in the appendix, cover two aileron widths: 15
percent and 30 percent of the wing chord. In both
cases, the ailerons were assumed to cover 50 percent
of the wing semispan.

Variations in the floating tendency of the aileron
were also considered but were found to have little effect
on the stability. The results given may therefore be
applied to any of the existing types of balance that
give smooth hinge-moment curves.?

The boundaries for stability in the two possible
modes are presented in figure 14~ Instability appears

1 Certain allerans of the Frise type that show- ﬁ reverss.l-ﬁt the !-;lnze-moment slope

may develop uncontrollable oscillations of Axed amplitude. This condition is dis-
cassed in reference 6.

)
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in the form of increasing oscillations and is most likely
to occur when the ailerons have a high degree of aero-
dynamic balance and too great a mass moment or

. moment of inertia. As the moment of inertis decreases,

the boundary for undamped oscillations approaches
that for straight divergence (which is itself independent
of the moment of inertia),; and it becomes possible for
both types of instability to exist simultaneously. The
condition to prevent straight divergence,

Ciy E—Chp,Crps— 0,,,,,0,,‘,,_%1 Ohekez*>0  (15)

. 13, however, always satisfied when there is damping of
_the-oscillations.

Straight divergence, as encountered in the elevator-
free and the rudder-free conditions, is indicated when
the constant term of the stability equation is negative,
that is, when

OED¢0h5 E Ohmols (1 6)

This condition is not likely to occur unless the aero-
dynamic balance is nearly complete.

CONCLUDING REMARKS

Experience has shown that, before the actual limit
of stability is reached, the airplane undergoes oscilla-
tions which, although damped, are still persistent
enough to be undesirable. The boundaries given in
the stability charts are therefore of value chiefly as
indications of the effect of certain design factors; they
are useful quantitatively only as outside limits, not to
be approached too closely. Further experiments will
be necessary to determine the margin of stability re-
quired for smooth operation in gusty air.

On the other hand, the charts are to a certain extent
conservative because they do not take into account the
possibility of friction of the control system, a factor
that would widen the margin of stability.

The indications of the present study may be sum-
marized as follows: .

1. There is a limit to the effectiveness of the aero-
dynamic balance that may be safely employed with
any conventional control system. In most cases, it
appears difficult to secure stability with the hinge
moment reduced to less than 25 percent of its value
for the unbalanced surface.

180134° —42—--9

2. Reduction of the floating moment C,,, if it can
be brought about independently of a reduction of the
aserodynamic balance, causes a shift of the boundary
for divergence. (Ci. figs. 8 and 7 and figs. 12 and 13.)
The effect is particularly noticeable in the case of the
rudder, where the likelthood of this form of instability
is materially decreased.

3. Within the ususl range of characteristics, the
elevator and-thwmileron-controls.A%% more susceptible
to oscillatory instability than to the rapid form of

divergent instability. The stebility with -either-~of Ynis
-these control§ free may be improved by (a) using a less

effective aerodynamic balance, (b) decreasing the mass
moment and the moment of inertia of the confrol, or
(¢) using a control surface of narrow chord.

4. Divergence is a more likely form of instability for
the rudder control (figs. 10 and 11) and may be avoided
by reducing the effectiveness of the aerodynamie bal-
ance or, as has been suggested, by using a balance that
reduces the floating tendency of the rudder, although a
highly effective balance of a type that reduces the
floating tendency may result in oscillatory instability.

5. The oscillatory stability of the elevator-free
system is but little affected by the restoring moment of
the airplane in pitch (Cn,). In the case of the yawing
motions, however, the existence of a strong restoring
moment (C,,) increases the likelihood of oscillatory
instability. (See, for example, fig. 10.)

6. In all cases, an increase in the relative radius of
gyration of the airplane results in an increased range of
stability (cf. figs. 3 and 4; see also fig. 10), but changes
in weight without corresponding changes in the rotary
inertia have little effect. (See fig. 5.)

7. The use of a narrow control surface is recom-
mended as a means of increasing the control-free
stability as well as from other considerations. The
marked effect of reducing the chord is shown by a
comparison of figure 8 with figure 3 and of figure 12
with figure 10.

LaneLEY MEMORIAL AERONAUTICAL LLABORATORY,
NaTIoNAL ADVISORY COMMITTEE FOR AERONAUTICS,
LaxcLEY FiBup, VA., August 15, 1940.



APPENDIX

STABILITY DERIVATIVES

The geometric and the aerodynamic characteristics
used in the stablht.y calculatl.ons are g1ven in tables I

toIV. 7
Tasre L—GENERAL AIRPLANE CHARACTERISTICS
Bedlemgth e erem 2,75
Wing chord ) T C
Horlzontaltallares ... S . 1
Wing area o .
Vertical-tallaves . .06 .
Wing ares T N )
Horizontal-tallchord L850
ing ehor T i B
Vertical-tail chord
~ Wing chord
Alleronchord .. .15
Wing chord :
Alerom 8Pl .50
Wing semispan ) i
Wing aspect ratio.... ... 6 .
Horfzontal-tail aspectratlo. __..__.__.. 876
Verttcal-tail aspect ratfo...__._. — 3.00 _
TasLe II—ELEVATOR-FREE STABILITY
COEFFICIENTS .
50-percent-chord 26-peieent-chord
elevator elevator
43 43
—-9.28 —0.28
4,.8(Q. 1835—2¢.s.) 4.8(0.135—24.¢.)
=112 ~L121
. =L450 —L 45
—. 960 -—. 872
—. 57 —.23
-1.00 -—. 50
—1.38 -, 406
—0.24and 0 ~.078

Tasre III—RUDDER-FREE STABILITY COEFFICIENTS

25-pe

50-percent- reent-
chord rudder | chord rudder

Cry . . —0.274 —0.274
Cupgee.oo. — 582 —.582
C"l ......... —. 0567 ~.0897
Cnpine —. 0460 —.0175
Cupg.o|]  —3 —. 78
Chgooo . .18 .075
L T 100 —.50

Tasim IV, —AILERON-FREE STABILITY COEFFICIENTS

=

15-pereent- 30-pereenb-
chord nﬁeron chord aileron
C‘np. ——- 2 —2.04
Cy oo — 2% ~.352
Cipgeeeee — 110 —.205
Cipgnnoo.. —. 184 ~.322
Crpgee. —. 650

—1.587
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The aerodynamic coefficients are, in most cases,
based on experimental results; theoretical values are
used only where such results were not established.
Discussions of the more commonly used derivatives will
be found in references 7, 8, and 9. Several of the
unfamiliar coefficients are developed in the following
paragraphs.

Damping in pitching Omp.—The principal com-

ponent of damping in pitching, furnished by the horizon-

tal tail, is

%
0, Se

In addition, the pitching motion introduces a relative
camber of the wing section, giving rise to & moment .
coefficient

_x b _
420,
Thus
__U/Slg ,me
- On=—T\S V12
Then,-since
o 2l
T —De

Copim 250 o]

Pitching-moment slope Om,—The pitching-moment
slope is given by

. Oma xa Tac. | OLza .c.

where 2., and z,. are the distances of the aero-
dynamic center of the complete airplane behind and
below the center of gravity. The location of the aero-
dynamic center for the airplane as a whole is estimated
by taking the centroid of the aerodynamic centers of the.
various components. Thus, if terms in 2, (which is
usually small) are neglected,

253 OL“: S:

2T, S

Ta.c.=%a.c Ta.c.qq1)

‘wing
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Pitching-moment coeflicient due to vertical accelera-
tion C, .—The pitching-moment coefficient due to

vertical acceleration arises from the aerodynamic
inertis of the wing and the horizontal tail surfaces in
motion normal to their chords. The force on each
surface is equal to the reaction of a body of air described
by rotating the surface about its midchord line. Thus,
the pitching moment

e n(in 05,

Cr= ‘“‘+’“’f%,) De

where 5 is the distance from the 50-percent-chord
point of the wing to the center of gravity of the airplane
end Zso, is the same distance measured from the cor-
responding point of the horizontal teil.

Pitching moment due to elevator deflection C,,.—
The pitching moment due to elevator deflection is
given by the formula

0020 8, 1

Oc,
R AT
where a, is the angle of zero lift of the elevator.

Theoretical and experimental values for e, /ds, for
flaps with sealed hinges, are given in figure 15. The co-
efficients used in these calculations (C,, and C, as well
as C,) were, however, based on the experimentally de-
termined changes of lift produced by a flap with open
gaps at the hinges. The effect of a small gap is to reduce
the effectiveness of the fiap by about 80 percent. At a
large deflection, the flap with inset-hinge balance shows
a still greater loss because of the protruding balance
portion.

Pitching-moment coefficient dué fo angular velocity
of the elevator (, .—The pitching-moment coeffi-
cient due to angular velocity of the elevator is

. o d(],,l S, 1
=03~ gDs S ¢

dC’,,t bO,,,_I_aa' dO’L
dDs  oDs aDaT

The parameters 90, /OD8é and da./0D5 may be found as
functions of the chordwise position of the hinge from
figure 15. The figure is based on the theoretical treat-
ment of Theodorsen (reference 7), with the assumption
of long oscillations (greater than 20 chord lengths). It
must be remembered that Dé involves the distance
traveled by the eirplane measured in terms of its half-
wing chord, and the quantities given must be multiplied
by the ratio ¢,fe, to convert them to half-wing chord
lengths.

Damping moment of elevator O, ,,—The hinge mo-
ment due to angular velocity is treated theoretically
by Theodorsen in reference 7. Figure 16, derived from

where
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the theory, gives the componen(; parameters of the
damping moment as functions of the chordwise position
of the hinge. The same considerations are effective
here as in the application of figure 15. '
Hinge moment due to pitching C, ,—Positive pitch-
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F1auRE 15.—Parameters for determining the effects of angular velocity and deflection
of flaps on the Uft.

2CL 30 da, 30 de,
Cr=Db s + D 3 ST P 3 o8

ing motion causes an inerease in the angle of attack of
the tail surface equal to l§/U;. The resulting hinge-
moment coefficient is
6
I—];C‘h"mll
and, since
Ig 2l
T c—DB
2l
0"36:6_0&“”“
Inasmuch as rotation of the airplane about its center of
gravity does not appreciably change the lift of the
wing, the downwash correction may be neglected.
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Hinge moment due to change in angle of attack
C,,—In accordance with the indications of tests by

Goett and Reeder (reference 4), the aerodynamic float-
ing moment 0"«: , Vas assumed independent of the
{/]

degree of aerodynamic balance of the control surface

™ d (d_cyhd)a

2]
i

———

T ——

Chordwise hinge position

PiGURE 16,—Parameters for determining the damping moments of fieps.
30K ) dC'L( dCH

(Gg. 6). The assumption is valid for the inset-hinge
type of balanced flap shown in this figure. The floating
moment will vary with the type of balance, however,
as discussed in the text, and additional computations
were therefore made in which O"a;au was assumed equal

to zero.

The lateral-stability derivatives Cys Chy,

o0,
Copy= bC‘ and Ci,,= pc are discussed in refer-
5T %7,

ences 8 and 9. The other coefficients for the lateral
motions are derived in a manner closely analogous to
the derivation of the corresponding longitudinal
coeflicients.

The values of the mass moment and the moment-of-
inertia coefficients of several representative elevator-
control systems were determined experimentally in

‘order to find the magnitude and the range to be expected

in practice. The experiments were made by attaching
a spring of known stiffness to the cantrol column, oscil-
lating the system, and recording the frequency and the
damping. The mass moment was megsured directly
with a spring scale. The interpreted results are given
in the following table:

- Airplane . FE frako?
North Amerlean BT-9...__. 2,70 1.35
Curtiss P-86 . .90
Lockheed 12 0.5 4.5
Fairchild 22.___ 80 L1
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